Synchronous oscillatory activity in immature cortical network is driven by GABAergic preplate neurons.
نویسندگان
چکیده
Neurons dissociated from embryonic cerebral rat cortex form a differentiated network of synaptic connections and develop synchronous oscillatory network activity with the beginning of the second week in culture. During an initial phase lasting 3-4 d, synchronous calcium transients can be blocked completely by either CNQX or bicuculline, showing that both glutamatergic and GABAergic neurons are required for the generation of this form of activity. By manipulating dissociation and growth conditions, cultures containing different populations of GABAergic neurons were obtained. These cultures revealed that a distinct population of large GABAergic neurons is a key element in the generation of synchronous oscillatory network activity. A minimal number of two large GABAergic neurons per square millimeter are required for the occurrence of synchronous activity. Changes in the density of all other types of GABAergic or non-GABAergic neurons has no influence on the synchronous activity. Electron microscopic analysis shows that the large GABAergic neurons form an interconnected network. Exceptionally high somatodendritic innervation and extended axonal arborization enable these neurons to collect electric network activity and to distribute it effectively throughout the neuronal network. Additional experiments indicated that most neurons developing in culture to large GABAergic neurons are derived from the primordial plexiform layer and reside in the subplate at the time of birth. We suggest that they function as an integrating element that synchronizes neuronal activity during early cortical development by collecting incoming extrinsic and intrinsic signals and distributing them effectively throughout the developing cortical plate.
منابع مشابه
Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملDynamic changes in interneuron morphophysiological properties mark the maturation of hippocampal network activity.
During early postnatal development, neuronal networks successively produce various forms of spontaneous patterned activity that provide key signals for circuit maturation. Initially, in both rodent hippocampus and neocortex, coordinated activity emerges in the form of synchronous plateau assemblies (SPAs) that are initiated by sparse groups of gap-junction-coupled oscillating neurons. Subsequen...
متن کاملLong-Range GABAergic Connections Distributed throughout the Neocortex and their Possible Function
Features and functions of long-range GABAergic projection neurons in the developing cerebral cortex have been reported previously, although until now their significance in the adult cerebral cortex has remained uncertain. The septo-hippocampal circuit is one exception - in this system, long-range mature GABAergic projection neurons have been well analyzed and their contribution to the generatio...
متن کاملContribution of GABAergic Interneurons to the Development of Spontaneous Activity Patterns in Cultured Neocortical Networks
Periodic synchronized events are a hallmark feature of developing neuronal networks and are assumed to be crucial for the maturation of the neuronal circuitry. In the developing neocortex, the early network oscillations coincide with an excitatory action of the neurotransmitter gamma-aminobutyric acid (GABA). A relationship between the emerging inhibitory action of GABA and the gradual disappea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 22 شماره
صفحات -
تاریخ انتشار 2001